How To Implement A Custom SharePoint 2010 Logging Service
For ULS And Windows Event Log

Jurgen Baurle
January 2011

Parago Media GmbH & Co. KG

Introduction

Prior to Microsoft SharePoint 2010 there was no official documented way to programmatically use the built-in ULS
service (Unified Logging Service) to log own custom messages. There are still solutions available on the internet that
can be used, but SharePoint 2010 now supports full-blown logging service support.

To log a message to the SharePoint log files just call the WriteTrace method of the SPDiagnosticsService class:

SPDiagnosticsService.Local.WriteTrace (0,
new SPDiagnosticsCategory ("MyCategory", TraceSeverity.Medium, EventSeverity.Information),
TraceSeverity.Medium, "My log message");

The problem with this technique is that the log entry does not contain any category information, instead SharePoint
uses the value "Unknown":

Qw0208 5 iz - Simc idadius WeEsandRaquast « Remotarddras Ttpe L luin. 31Feuinagsd
1ECO Unknown LoggingServiceTestPage 0000 Medium Test Message 1 3a|:|a&ar_ﬂ—zd.tg—dasa-‘?acg—dsaﬂsﬂaﬁﬁabr
emt——Frert WO RETE TEREgUEST T COTa TRt ess T NPT 7 WiT=S T n82:32843/3c
freifld Sharabnint Crandarion Meritaring nazn e Entarina manitarad crone (Cvarurswfosrvarnoneratinnt GrR3ARFa_0

Of course, that does not matter if someone develops small solutions. Developing custom solutions you may want to
implement an own logging service with custom categories and Ul integration within the Central Administration (CA)
of SharePoint 2010.

This article shows how to develop a custom logging service that integrates with the Diagnostic Logging Ul of the
Central Administration:

—igixi
ﬁ—ﬂv| o win-31frua00g82: 34446 Irics g = 4 % Jesw Bl
L Favorites [T lagrostc Loggng %p v B - L sm - Pager Safetyr Tods< e
B2\administrator =
] §F;repointznln Central Administration » Diagnostic Logging # .
e Tt a0s 8
(7]
Centra Event Throttling
Administration Select a category
A tian Management Category Event Lewel Trace Lewel
Systermn Settings S [J 4N categsnes
Manitering
Backup and Restore serviees
. @ [~ Cellert
P B [~ Document Canversions
Gamaral Eewcation & [~ Documnent Management Server
Sattings 3 [eApproval
Configuration Wizards | ® [Excel Services Application _
@ [~ InfoPath Forms Sarvices
oI Faress
" [application Pages Information Medium
@ [~ PerformancePoint Service
3 [Secure Store Service
@ [~ SharePaint Fo
3 [~ Share Feume
@ [~ Sharefaint Portal
@ [~ SharePoint Server
ink Server Search
r Reparting Services
Graphics Servica
B [Web Analytics Services
o [T Web Content Managamant :J
=TT [[[Trusted stes | Protected Mode: OFF [Fa = [Rwosm =

Custom Logging Service

A custom logging service must inherit from the SPDiagnosticsServiceBase class. This is the base class for diagnostic
services in SharePoint and it offers the option to log messages to log files via ULS and to the Windows Event Log.
By overriding the ProvideAreas method the service provides information about diagnostic areas, categories and
logging levels. A diagnostic area is a logical container of one or more categories.

The sample service defines one diagnostic area and one category (used by application pages) for this area:

[Guid ("D64DEDE4-3D1D-42CC-AF40-DBO9FODFA309")]
public class LoggingService : SPDiagnosticsServiceBase

{

public static class Categories

{
public static string ApplicationPages = "Application Pages";

}

public static LoggingService Local

{

get { return SPFarm.Local.Services.GetValue<LoggingService> (DefaultName); }

}

public static string DefaultName

{

get { return "Parago Logging Service"; }

}

public static string AreaName

{

get { return "Parago"; }

}

protected override IEnumerable<SPDiagnosticsArea> ProvideAreas ()

{

List<SPDiagnosticsArea> areas = new List<SPDiagnosticsArea>

{

new SPDiagnosticsArea (AreaName, 0, 0, false, new List<SPDiagnosticsCategory>

{
new SPDiagnosticsCategory(Categories.ApplicationPages, null, TraceSeverity.Medium,
EventSeverity.Information, 0, 0, false, true)

})
bi

return areas;

The area name as well as the category names will be also shown in the Diagnostic Logging Ul of the CA. It is also
possible to define a resource DLL to localize the names.

The service will offer the two static methods WriteTrace and WriteEvent. WriteTrace writes the log message to the
SharePoint log files, usually saved in the ShatePoint folder C:\Program Files\ Common Files\Microsoft Shared\Web Server
Exctensions\ 14\LLOGS.

The WriteEvent writes the log message to the Windows Event Log. The event source is called like the AreaName
and later on created within the FeatureReceiver:

[Guid ("D64DEDE4-3D1D-42CC-AF40-DBO9FODFA309")]
public class LoggingService : SPDiagnosticsServiceBase

{

public static void WriteTrace (string categoryName, TraceSeverity traceSeverity,
string message)
{
if (string.IsNullOrEmpty (message))
return;

try

LoggingService service = Local;

if (service != null)

{
SPDiagnosticsCategory category = service.Areas[AreaName].Categories[categoryName];
service.WriteTrace (1, category, traceSeverity, message);

}
catch { }

}

public static void WriteEvent (string categoryName, EventSeverity eventSeverity,
string message)

{
if (string.IsNullOrEmpty (message))

return;

try

{
LoggingService service = Local;
if (service != null)

{
SPDiagnosticsCategory category = service.Areas[AreaName].Categories[categoryName];
service.WriteEvent (1, category, eventSeverity, message);

catch { }

The usage of the new custom logging service is quite simple:

// ULS Logging
LoggingService.WriteTrace (LoggingService.Categories.ApplicationPages,
TraceSeverity.Medium, "...");

// Windows Event Log
LoggingService.WriteEvent (LoggingService.Categories.ApplicationPages,
EventSeverity.Information, "...");

Next, we need to register it with SharePoint.
Service Registration

The custom logging service must be registered with SharePoint 2010 to show up in the Diagnostic Logging Ul of the
CA. The event sources also must be created on each server of the SharePoint farm. These two registration steps can
be bundle within the FeatureActivated override method of the FeatureReceiver.

[Guid ("50CA5F69-381F-4C2A-BE6C-F28219AFF20C")]
public class FeatureEventReceiver : SPFeatureReceiver

{
const string EventLogApplicationRegistryKeyPath =
@"SYSTEM\CurrentControlSet\services\eventlog\Application";

public override void FeatureActivated (SPFeatureReceiverProperties properties)

{
RegisterLoggingService (properties) ;

}

public override void FeatureDeactivating (SPFeatureReceiverProperties properties)

{

UnRegisterLoggingService (properties) ;

static void RegisterLoggingService (SPFeatureReceiverProperties properties)

{

SPFarm farm = properties.Definition.Farm;
if (farm !'= null)
{

LoggingService service = LoggingService.Local;

if (service == null)

service = new LoggingService();
service.Update () ;

if (service.Status != SPObjectStatus.Online)
service.Provision () ;

}

foreach (SPServer server in farm.Servers)

{

RegistryKey baseKey = RegistryKey.OpenRemoteBaseKey (RegistryHive.LocalMachine,

server.Address) ;

if (baseKey != null)

{
RegistryKey eventLogKey = baseKey.OpenSubKey (EventLogApplicationRegistryKeyPath,

true);

if (eventLogKey != null)

{
RegistryKey loggingServiceKey = eventLogKey.OpenSubKey (LoggingService.AreaName) ;

if (loggingServiceKey == null)
loggingServiceKey = eventLogKey.CreateSubKey (LoggingService.AreaName,
RegistryKeyPermissionCheck.ReadWriteSubTree) ;

loggingServiceKey.SetValue ("EventMessageFile",
@"C:\Windows\Microsoft .NET\Framework\v2.0.50727\EventLogMessages.dll",

RegistryValueKind.String) ;

static void UnRegisterlLoggingService (SPFeatureReceiverProperties properties)

{

SPFarm farm = properties.Definition.Farm;

if (farm != null)

{

LoggingService service = LoggingService.Local;

if (service != null)
service.Delete () ;

foreach (SPServer server in farm.Servers)

{
RegistryKey baseKey = RegistryKey.OpenRemoteBaseKey (RegistryHive.LocalMachine,

server.Address) ;

if (baseKey != null)

{
RegistryKey eventLogKey = baseKey.OpenSubKey (EventLogApplicationRegistryKeyPath,

true) ;

if (eventLogKey != null)

{
RegistryKey loggingServiceKey = eventLogKey.OpenSubKey (LoggingService.AreaName) ;

if (loggingServiceKey != null)
eventLogKey.DeleteSubKey (LoggingService.AreaName) ;

The FeatureActivated override is calling the RegisterLoggingService helper method to register with the SharePoint
system if the service is not already available. Since one of the base classes of LoggingService is the SPService class

which provides an Update and Provision method, we can register the new service farm-wide.

The second step is to create a new Windows Event Log source. Therefore we have to go through the collection of
SharePoint farm servers and remotely add the new source by generating registry entries on each server.

To unregister we redo the registration steps by overriding FeatureDeactivating method of the FeatureReceiver class.
The UnRegisterLoggingService method then deletes the service and removes all registry keys on all servers in the
SharePoint farm.

The sample solution also created an application page to test the logging service. The source code is available as
download.

Service Test Page - Windows Inbernel Explorer ;JQ.lil

WA hee:iwn-31hua00e82, avouts/Parsga soangseniceTestPage. asp BIEIEN e =
o - »

o Favorites |77 Lpgging Service Test Page T B - L e - Page Safety - Teds- -

e il =
{ Home » Logging Service Test Page -
I Like It Tags &
Hotes
Hame Search this site... p ﬂ
Librares Enter the message used to create an ULS trace and Windows avent log entry
Site Pages
el [Test Message 1 Parago Logging Log
Shared Documents
Enter a test message and press the Log button. The message will be logged to the Windows Event Log:
-loix
Fle Action View Help
| Hm B
|| Event Viewer {Local) | Acticns
5 I s Lo [Roplcation — L
El _g 'Windows Logs
| Apphcation 116/2011 Z33:44PM 5 OpenSavedlog...
I+ searity W Create Custom View...
5 Setup
& System Impork Custom View...
[l Forwarded Events
B (5 Appikcations and Services Logs Clear Log...
, 4 Subseriplions ¥ Fiter Current Log...
] Properbes
Event 1, Parago x -
M Find...
General | Details | Il Seve Al Events As...
est Message 1 Paraga Logging Attach a Tesk To s Log...
Whew 3
[Refresh
H oo r
Leghame: plcsian
Sowrce: Paragn Lagged: 1716/2001 2:33:44 PM '] Eventfr
Zoin e e e & Attach Task To This Event...
Levek: Information Keywonds: Classic o
Usen /A Computer: WIN-31FRUMDOGR2 Fave Sefected Brents..,
OpCode: = Copy b
Mare Information: Event Log Online Help [0 Refresh
H e »
[
And to the SharePoint log files:
0xi910 Sharepoint Foundation Logging Correlation pata Xmov Medium Name-Request (POST:PTTp:/ win-31frud00q82: 80/)ayouts/Parago/Loggingsery
sz i§ :’a’:‘a;;vtm 'antw 13371’2'3:7%' ;;;;;w‘ i ITW :ed :;: :;;rMes'sag! 1 parago Logging”.:f_}eble‘dlc:d‘)=1t>;-1t7lz9~8656—123:}!’6@98}!)L 12
0x130C SharePoint Foundation Topology esmb Medium wcfReceiveRequest: Localaddress: 'http://win-31frud0oq82: 32843/ 3cadaf 9bc
0x130C sharepoint Foundation vonitoring nasg Medium Entering monitored scope (Executewcfserveroperation) a06b2d20-8ed2-db
That’s it.
Summary

Implementing a custom logging service for SharePoint 2010 is straightforward, easy and very powerful. It is not
necessary to create a custom logging solution for small SharePoint projects, but if you are developing large custom
solutions you may consider using such a logging system.

Contact Information
If you have any feedback or suggestions, please feel free to contact me:

Jurgen Baurle

jbautle@parago.de

http://www.parago.de/jbaurle

Parago Media GmbH & Co. KG
Im Wengert 3 | 71336 Waiblingen, Germany | Phone +49.7146.861803 | Internet http://www.parago.de

mailto:jbaurle@parago.de
http://www.parago.de/jbaurle
http://www.parago.de/

