
 
How To Integrate SAP Business Data Into SharePoint 2010  

Using Business Connectivity Services And LINQ to SAP  
 

 
Jürgen Bäurle 

 
August 2010 

 
Parago Media GmbH & Co. KG 

 
 
Introduction 
 
One of the core concepts of the Business Connectivity Services (BCS) for SharePoint 2010 are the external content 
types. They are reusable metadata descriptions of connectivity information and behaviours (stereotyped operations) 
applied to external data. SharePoint offers developers several ways to create external content types and integrate 
them into the platform. The SharePoint Designer 2010 for instance allows you to create and manage external content 
types that are stored in supported external systems. Such an external system could be SQL Server, WCF Data Service 
or a .NET Assembly Connector.  
 
This article shows you how to create an external content type for SharePoint named Customer based on given SAP 
customer data. The definition of the content type will be provided as a .NET assembly and the data are displayed in 
an external list in SharePoint.  
 
The SAP customer data are retrieved from the function module SD_RFC_CUSTOMER_GET. In general, function 
modules in a SAP R/3 system are comparable with public and static C# class methods and can be accessed from 
outside of SAP via RFC (Remote Function Call). Fortunately we do not need to program RFC calls manually. We 
will use the very handy ERPConnect library from Theobald Software. The library includes a LINQ to SAP provider 
and designer that makes the our live easier. 
 
.NET Assembly Connector for SAP 
 
The first step in providing a custom connector for SAP is to create a SharePoint project with the SharePoint 2010 
Developer Tools for Visual Studio 2010. Those tools are part of Visual Studio 2010. We will use the Business Data 
Connectivity Model project template to create our project: 
 

 



After defining the Visual Studio solution name and clicking the OK button, the project wizard will ask what kind of 
SharePoint 2010 solution you want to create. The solution must be deployed as a farm solution, not as a sandboxed 
solution. Visual Studio is now creating a new SharePoint project with a default BDC model (BdcModel1). You can also 
create an empty SharePoint project and add a Business Data Connectivity Model project item manually afterwards. This 
will also generate a new node to the Visual Studio Solution Explorer called BdcModel1. The node contains a couple of 
project files: The BDC model file (file extension bdcm), the Entity1.cs and EntityService.cs class files. 
 
Next, we add a LINQ to SAP file to handle the SAP data access logic by selecting the LINQ to ERP item from the 
Add New Item dialog in Visual Studio. This will add a file called LINQtoERP1.erp to our project. The LINQ to SAP 
provider is internally called LINQ to ERP. Double click the LINQtoERP1.erp to open the designer. Now, drag the 
Function object from the designer toolbox onto the design surface. This will open the SAP connection dialog since no 
connection data have been defined so far: 
 

 
 
Enter the SAP connection data and your credentials. Click the Test Connection button to test the connectivity. If you 
could successfully connect to your SAP system, click the Ok button to open the function module search dialog. Now 
search for SD_RFC_CUSTOMER_GET, then select the found item and click Ok to open the RFC Function Module / 
BAPI dialog: 
 

 



The dialog provides you the option to define the method name and parameters you want to use in your SAP context 
class. The context class is automatically generated by the LINQ to SAP designer including all SAP objects defined. 
Those objects are either C# (or VB.NET) class methods and/or additional object classes used by the methods. 
 
For our project we need to select the export parameters KUNNR and NAME1 by clicking the checkboxes in the 
Pass column. These two parameters become our input parameters in the generated context class method named 
SD_RFC_CUSTOMER_GET. We also need to return the customer list for the given input selection. Therefore we 
select the table parameter CUSTOMER_T on the Tables tab. Then, click the Ok button on the dialog and the new 
objects gets added to the designer surface. 
 
The LINQ designer has also automatically generated a class called Customer within the LINQtoERP1.Designer.cs file. 
This class will become our BDC model entity or external content type. But first we need to adjust and rename our 
BDC model that was created by default from Visual Studio. Currently the BDC model looks like this: 
 

 
 
Rename the BdcModel1 node and file into CustomerModel. Since we already have an entity class (Customer), delete the 
file Entity1.cs and rename the EntityService.cs file into CustomerService.cs. Next, open the CustomerModel file and rename 
the designer object Entity1. Then, change the entity identifier name from Identifier1 to KUNNR. You can also use the 
BDC Explorer for renaming. The final adjustment result should look as follows: 
 

 



After those modifications the current SharePoint project should look similar to the next screenshot: 
 

 
 
The last step we need to do in our Visual Studio project is to change the code in the CustomerService.cs class. The BDC 
model methods ReadItem and ReadList must be implemented using the automatically generated LINQ to SAP code. 
First of all, take a look at the code: 
 

 
 
As you can see we basically have just a few lines of code. All of the SAP data access logic is encapsulated within the 
SAP context class (see LINQtoERP1.Designer.cs file). The CustomerService class just implements a static constructor to 
set the ERPConnect license key and to initialize the static variable _sc with the SAP credentials as well as the two BDC 
model methods. 
 
The ReadItem method, BCS stereotyped operation SpecificFinder, is called by BCS to fetch one specific item defined by 
the identifier KUNNR. In this case we just call the SD_RFC_CUSTOMER_GET context method with the passed 
identifier (variable id) and return the first customer object get from SAP. 
 



The ReadList method, BCS stereotyped operation Finder, is called by BCS to return all entities. In this case we just 
return all customer objects the SD_RFC_CUSTOMER_GET context method returns. The returned result is already 
of type IEnumerable<Customer>. 
 
The final step is to deploy the SharePoint solution. Right-click on the project node in the Visual Studio Solution 
Explorer and select Deploy. This will install and deploy the SharePoint solution on the server. You can also debug 
your code by just setting a breakpoint in the CustomerService class and executing the project with F5. 
 
That's all we have to do! 
 
Now, start the SharePoint Central Administration panel and follow the link "Manage Service Applications" or navigate 
directly to the URL http://<SERVERNAME>/_admin/ServiceApplications.aspx.  
 

 
 
Click on Business Data Connectivity Service to show all available external content types: 
 

 
 
On this page we find our deployed BDC model including the Customer entity. You can click on the name to retrieve 
more details about the entity. Right now, there is just one issue open. We need to set permissions! 
 
Mark the checkbox for our entity and click on the Set Object Permissions in the Ribbon menu bar. This will open the 
following permission dialog:  
 
 



 
 
 
Now, define the permissions for the users you want to allow to access the entity and click the Ok button. In the 
screen shown above the user administrator has all permissions possible.  
 
In the next and final step we will create an external list based on our entity. To do this we open SharePoint Designer 
2010 and connect us with the SharePoint web site. 
 

 
 

Click on External Content Types in the Site Objects panel to display all content types (see above). Double click on the 
Customer entity to open the details. The SharePoint Designer is reading all information available by BCS.  
 
In order to create a external list for our entity click on Create Lists & Form on the Ribbon menu bar (see screenshot 
below) and enter CustomerList as name for the external list. 



 
 
Ok, now we are done!  
 
Open the list and you should get the following result: 
 

 
 
 
The external list shows all defined fields for our entity, even though our Customer class, automatically generated by 
the LINQ to SAP, has more than those four fields. This means you can only display a subset of information for your 
entity.  
 
Another option is to just select those fields required within the LINQ to SAP designer. With the LINQ designer you 
can access not only SAP function modules. You can integrate other SAP objects, like tables, BW cubes, SAP Query 
or IDOCs. A demo version of the ERPConnect library can be downloaded from the Theobald Software homepage. 
 



If you click the associated link of one of the customer numbers in the column KUNNR (see screenshot above), 
SharePoint will open the details view: 

 

 
 
 
Summary 
 
This article has shown how easy and simple it is to integrate business data from SAP into the SharePoint platform 
using standard tools. Combing the powerful Microsoft Visual Studio 2010 with its SharePoint development tools and 
the handy LINQ to SAP provider tool from Theobald Software, you just need to write a couple of code lines to stick 
together all the logic we need to create an external list in SharePoint 2010 and BCS. 
 
Contact Information 
 
If you have any feedback or suggestions, please feel free to contact me: 
 
Jürgen Bäurle 
jbaurle@parago.de 
http://www.parago.de/jbaurle 
 
Parago Media GmbH & Co. KG 
Im Wengert 3 | 71336 Waiblingen, Germany | Phone +49.7146.861803 | Internet http://www.parago.de 
 


