How To Implement A Modern Progress Dialog For WPF Applications

Jurgen Biurle
April 2011

Parago Media GmbH & Co. KG

Introduction

Developing a Windows Presentation Foundation (WPF) application requires sometimes to execute an asynchronous
task with long-running execution steps, e.g. calling a web service. If those steps are triggered by user interactions, you
want show a progress dialog to block the user interface and display detail step information. In some cases you also
want to allow the user to stop the long-running task by clicking a Cancel button.

The following screenshots show some samples of progress dialogs implemented in this article:

Loading data
Executing step 7/20..

C— o[cancel |

Loading data
Executing step 3/5...

- o | Concel |

Loading data
Executing step 3/5...

‘.Lul

Loading data...

= -_—

This article will show how to implement such progress dialogs in WPF with C#. All of the above dialogs can be used
with one implementation. The solution will also show how to hide the close button of a window, which is officially
not supported by WPF.

The next section describes the usage of the progress dialog.

The Usage Of The Progress Dialog

The code snippet below shows how to use and display such a progress dialog:

ProgressDi al ogResult result = ProgressDi al og. Execute(this, "Loading data...", () => {
// TODO. Do your work here!

1)

if(result.OperationFail ed)
MessageBox. Show(" ProgressDi al og failed.");

el se
MessageBox. Show(" Progr essDi al og successfully executed.");

The ProcessDialog class provides a number of static Execute methods (overrides) to easily setup a long-running task
with a dialog window. The first parameter always defines the parent window in order to center the process dialog
relative to the parent window. The second parameter is the text message displayed in all dialogs. The third parameter
is the asynchronous method itself.

The fourth parameter allows to pass additional settings. Those dialog settings, represented by an instance of the
ProcessDialogSettings class, define if the dialog shows a sub label, has a Cancel button or displays the progress bar
itself in percentage or indeterminate. Predefined settings are also defined as static properties.

Using lambda expressions in C#, it is very comfortable to start a long-running task and displaying the dialog. You
can also communicate with the progress dialog to report messages to the user by calling the Report method of the
ProgressDialog class:

ProgressDi al ogResult result = ProgressDi al og. Execute(this, "Loading data...", (bw) => {
ProgressDi al og. Report (bw, "Connecting to the server...");
/] TODO Connect to the server
ProgressDi al og. Report (bw, "Reading netadata...");
/] TODO Readi ng netadata

}, ProgressDi al ogSettings. Wt hSubLabel) ;

The two samples above did not show a Cancel button. The next code shows a progress dialog with a Cancel button
including code to check if the long-running code must be cancelled:

int mllisecondsTi neout = 1500;

ProgressDi al ogResult result = ProgressDi al og. Execute(this, "Loading data", (bw, we) => {

for(int i =1; i <=5; i++)
i f (ProgressDi al og. Report Wt hCancel | ati onCheck(bw, we, "Executing step {0}/5...", i))
return;

Thread. Sl eep(m | | i secondsTi meout) ;

}

/1 So this check in order to avoid default processing after the Cancel button has been
/] pressed. This call will set the Cancelled flag on the result structure.
ProgressDi al og. CheckFor Pendi ngCancel | ati on(bw, we);

}, ProgressDi al ogSettings. Wt hSubLabel AndCancel) ;

if(result. Cancell ed)
MessageBox. Show(" Progr essDi al og cancel l ed.");
el se if(result.OperationFail ed)
MessageBox. Show(" ProgressDi al og failed.");
el se
MessageBox. Show(" Progr essDi al og successfully executed.");

Calling the ReportWithCancellationCheck method will check for a pending cancellation request (from the UI) and
will may set the Cancel property of the DoWorkEventArgs class passed from the underlying BackgroundWorker
object to True. Otherwise the method will display the message and continue processing.

The Exceute method of the ProgressDialog class will return an instance of the ProgressDialogResult class that
returns the status of the execution. Thrown exceptions in the task method will be stored in the Error property if the
OperationFailed property is set to True. For more samples see the Visual Studio 2010 solution you can download
from my homepage.

Implementation

The ProgressDialog window contains the main application logic. The above described static Execute methods will
internally call the Executelnternal method to create an instance of the ProgressDialog window passing and setting all
necessary values. Then the Execute method with the asynchronous method as parameter is called:

internal static ProgressDi al ogResult Executelnternal (Wndow owner, string |abel,
obj ect operation, ProgressDial ogSettings settings)

{{
ProgressDi al og di al og = new ProgressDi al og(settings);
di al og. Owner = owner;

if(!string.lsNull OrEmpty(label))
di al og. Label = | abel;

return di al og. Execut e(operati on);

}

The operation method can be a delegate of the following type:

e Action

e Action<BackgroundWr ker >

e Action<BackgroundWrker, DoWorkEvent Args>

e Func<obj ect >

e Func<BackgroundWor ker, object>

e Func<BackgroundWor ker, DoWbrkEvent Args, object>

The Func types can return a value that will be used to set the Result property of the ProgressDialogResult class.

The Excute method is implemented as follows:

i nternal ProgressDi al ogResult Execute(obj ect operation)
{{
if(operation == null)
t hrow new Argunent Nul | Excepti on("operation");

ProgressDi al ogResult result = null;
_isBusy = true;

_wor ker = new BackgroundWr ker () ;
_wor ker . Wor ker Report sProgress = true;
_wor ker . Wor ker Support sCancel | ati on = true;

_wor ker. DoWork +=
(s, e =>{
if(operation is Action)
((Action)operation)();
el se if(operation is Action<BackgroundWrker>)
((Acti on<Backgr oundWor ker >) operati on) (s as BackgroundWor ker) ;
el se if(operation is Action<BackgroundWorker, DoWrkEvent Args>)
((Acti on<Backgr oundWor ker, DoWr kEvent Args>) oper ation) (s as BackgroundWrker, e);
el se if(operation is Func<object>)
e. Result = ((Func<obj ect>)operation)();
el se if(operation is Func<BackgroundWrker, object>)
e. Result = ((Func<BackgroundWrker, object>)operation)(s as BackgroundWorker);
el se if(operation is Func<BackgroundWrker, DoWrkEvent Args, object>)
e. Result = ((Func<BackgroundWr ker, DoWor kEvent Args, object>)operation)(s as
Backgr oundWor ker, e);
el se
throw new | nval i dOper ati onExcepti on("Operation type is not supoorted");

b
_wor ker . RunWor ker Conpl eted +=
(s, e =>{

result = new ProgressDi al ogResult(e);
Di spat cher. Begi nl nvoke(Di spatcherPriority. Send, (SendOr Post Cal | back)del egate {
_isBusy = fal se;

Cl ose();
}, null);
b
_wor ker. ProgressChanged +=
(s, e =>{
i f(!_worker. Cancel |l ati onPendi ng)
SubLabel = (e.UserState as string) ?? string. Enpty;
ProgressBar. Val ue = e. ProgressPer cent age;
}
b
_wor ker . RunWor ker Async() ;
ShowDi al og() ;

return result;

The ProgressDialog class is using internally a BackgroundWorker object to handle the asynchronous execution of the
task or operation method.

For more details of the implementation see the source code.
Summary

Using a progress dialog to handle the Ul for long-running task can be implemented quite simple. The effect is an
impressive and clean user communication expetience.

Contact Information
If you have any feedback or suggestions, please feel free to contact me:
Jurgen Biurle

jbautle@parago.de

http://www.parago.de/jbaurle

Parago Media GmbH & Co. KG
Im Wengert 3 | 71336 Waiblingen, Germany | Phone +49.7146.861803 | Internet http://www.parago.de

