

LINQ to SAP

Jürgen Bäurle

July 2008

Parago Media GmbH & Co. KG

Introduction

A lot has been written about Microsoft’s new data access technology LINQ (Language Integrated Query) since the
first preview version has been published. But there are still some interesting aspects to LINQ and its extensibility.
This article will introduce a new provider called LINQ to SAP which offers an easy way to retrieve business data
from SAP/R3 systems within a .NET application.

With the introduction of the .NET framework 3.5 and the programming language extensions for C# and VB.NET
Microsoft began to redefine the way developers would implement data access. Nearly all applications today are
querying data from different data sources. Mainly those data sources are SQL databases, XML files or in-memory
collections. LINQ offers an universal and standardized approach to access all those data sources using special data
providers. The LINQ language syntax strongly resembles that of SQL. The following sample shows how to query
data from a string array with LINQ:

string[] names = {"John", "Patrick", "Bill", "Tom"}

var res = from n in names where n.Contains("o") select n;

foreach(var name in res)

 Console.WriteLine(name);

This simple LINQ query based on an in-memory collection (array) selects all items in the array “names” that contain
the letter “o”. Console output: “John, Tom”. A LINQ introduction is beyond the scope of this article. A very good
introduction article can be found on CodeProject.com.

LINQ Providers

The .NET framework comes with built-in providers for collections and lists (LINQ to Objects), for Microsoft SQL
Server databases (LINQ to SQL), for XML files (LINQ to XML) and finally for DataSet object instances (LINQ to
DataSet). Beside the standard providers, developers can extend LINQ by creating custom providers to support
special data sources. LINQ to LDAP or LINQ to Amazon are examples of such custom providers.

To write a custom LINQ provider one must basically implement two interfaces: IQueryable and IQueryProvider.
These interfaces make objects queryable in LINQ expressions. Developing a LINQ provider can be a very complex
task, but there a quite some good blog entries on the net explaining the steps in detail.

This article will introduce a new provider called LINQ to SAP from Theobald Software which provides developers
with a simple way to access SAP/R3 systems and their data objects. The software also provides a Visual Studio 2008
Designer to define SAP objects interactively and integrate them in .NET applications.

SAP Background

This section will give you a short explanation and background of SAP objects that are queryable by LINQ to SAP.
The most important objects are Function Modules, Tables, BW Cubes and Queries.

A Function Module is basically similar to a normal procedure in conventional programming languages. Function
Modules are written in ABAP, the SAP programming language, and are accessible from any other programs within a
SAP/R3 system. They accept import and export parameters as well as other kind of special parameters. The image
below shows an example of a Function Module named BAPI_EQUI_GETLIST within the SAP Workbench:

Figure 1: Function Module (SAP Workbench)

In addition BAPIs (Business-API) are special Function Modules that are organized within the SAP Business Object
Repository. LINQ to SAP also allows access to SAP tables. Those are basically straightforward relational database
tables. Furthermore the LINQ to SAP Designer allows developers to define and access BW Cubes (Business Cube
Cubes) and Queries (SAP Query). BW Cubes are also known as OLAP Cubes. Data are organized in a multi-
dimensional way within a cube. SAP Queries work just like other queries. To indentify a SAP Query uniquely there
are three pieces of information necessary: user area (global or local); user group and the name of the query. With the
concept of Queries SAP provides a very simple to generate reports, without the need of knowing the SAP ABAP
programming language.

Visual Studio 2008 Designer for LINQ to SAP

In order to use LINQ to SAP and the associated Visual Studio Designer, the .NET library ERPConnect.net from
Theobald Software must be installed first. This software is the basic building block between .NET and a SAP/R3
system and provides an easy API to exchange data between the two systems. The company offers a free trial version
to download. After installing ERPConnect.net, LINQ to SAP must be installed separately using a setup program (see
manual). The provider and the designer are actually extensions to the ERPConnect.net library. The LINQ to SAP
provider itself consists of the Visual Studio 2008 Designer and additional class libraries that are bundled within the
namespace ERPConnect.Linq.

The setup adds a new ProjectItem type to Visual Studio 2008 with the file extension .erp and is linking it with the
designer. Double-clicking the .erp-file will open the LINQ to SAP Designer. The designer supports application
developers with the option to automatically generate source code to integrate with SAP objects. For all defined SAP
objects in an .erp file, the provider will create a context class which inherits from the ERPDataContext base class.
The generated context class contains methods and sub-classes that represent the defined SAP objects. Beside the .erp
file, LINQ to SAP designer will save the associated and automatically generated source code in a file with the
extension .Designer.cs.

Figure 2: Add new project item

Figure 3: SAP objects in LINQ to SAP Designer

Figure 4: Connection dialog in LINQ to SAP Designer

Function Modules

This section shows how to access and obtain data using the function module BAPI_EQUI_GETLIST by creating a
LINQ to SAP object. The module is returning an equipment list for pre-defined plants. First of all one must add a
new LINQ to SAP file (.erp) to a new or existing Visual Studio 2008 project. By opening the .erp file the LINQ to
SAP Designer will start. By double-clicking on the Function item in the toolbox of Visual Studio will add a new SAP
object Function Module. In the next step the object search dialog opens and the developer can search for function
modules.

Figure 5: Search dialog in LINQ to SAP Designer

Once the selection is made, the LINQ to SAP Designer will show up the Function Module dialog box with all data,
properties and parameter definitions of the selected module BAPI_EQUI_GETLIST. The user can now change the
naming of the auto-generated method as well as all used parameters.

Figure 6: Function Module dialog in LINQ to SAP Designer

For each function module the LINQ to SAP Designer will generate a context class method with all additional object
classes and structures. If for instance the user defines a method name called GetEquipmentList for the function
module BAPI_EQUI_GETLIST, the designer will generate a context class method with that name and the defined
method signature. The user can also specify the parameters to exchange. The lower area of the dialog is displaying
the SAP typical parameters, like IMPORT, EXPORT, CHANGING and TABLES parameters. LINQ to SAP allows
to define default values for SAP parameters. Those parameters can also be used as parameters for the auto-generated
context class method as well as for return values. The names for the parameters and the associated structures can
also be renamed.

The method signature for the function module defined above looks like this:

public EquipmentTable GetEquipmentList(PlantTable plants)

The context class itself is named SAPContext by default. The context class name, the namespace, the connection
settings as well as other flags can be defined in the properties window of the LINQ to SAP Designer. The following
code shows how to use the context class SAPContext:

class Program

{

 static void Main()

 {

 SAPContext dc = new SAPContext("TESTUSER", "XYZ");

 SAPContext.PlantTable plants = new SAPContext.PlantTable();

 SAPContext.PlantStructure ps = plants.Rows.Add();

 ps.SIGN = "I";

 ps.OPTION = "EQ";

 ps.LOW = "3000";

 SAPContext.EquipmentTable equipList = dc.GetEquipmentList(plants);

 }

}

Tables

The procedure for adding a SAP Table is basically the same as for function modules (see above). After adding the
SAP Table object from the toolbox in Visual Studio and finding the table with the search dialog, the Table dialog will
show up:

Figure 7: Tables Module dialog in LINQ to SAP Designer

In the upper part of the table dialog the user must define the class name for table object for auto-generation. The
default name is the name of the table. The lower part shows a data grid with all table fields and their definitions. For
each field a class property name can be defined for the auto-generated context class code. The checkbox in the first
column selects if the field will be part of the table class.

The figure above shows the definition of the SAP Table object T001W. This tables stores plant information. The
class has not been changed, so the designer will create a C# class with the name T001W. In addition the context
class will contain a property T001WList. The type of this property is ERPTable<T001W>, which is LINQ queryable
data type.

The following code shows how to query the table T001W using the context class:

class Program

{

 static void Main()

 {

 SAPContext dc = new SAPContext("TESTUSER", "XYZ");

 dc.Log = Console.Out;

 var res = from p in dc.T001WList

 where p.WERKS == "3000"

 select p;

 foreach (var item in res)

 Console.WriteLine(item.NAME1);

 }

}

SAP Context Class and Logging

To access objects using LINQ to SQL, the provider will generate a context class named DataContext. Accordingly
LINQ to SAP also creates a context class called SAPContext. This class is defined as a partial class. A partial class is
a type declaration that can be split across multiple source files and therefore allows developers to easily extend auto-
generated classes like the context class of LINQ to SAP.

The code sample below shows how to add a partial class (file SAPContext.cs) which adds a new custom method
GetEquipmentListForMainPlant to extend the context class generated by the LINQ to SAP designer. This new
method calls internally the auto-generated method GetEquipmentList with a pre-defined parameter value. The C#
compiler will internally merge the auto-generated LINQtoERP1.Designer.cs with the SAPContext.cs source file.

using System;

namespace LINQtoSAP

{

 partial class SAPContext

 {

 public EquipmentTable GetEquipmentListForMainPlant()

 {

 SAPContext.PlantTable plants = new SAPContext.PlantTable();

 SAPContext.PlantStructure ps = plants.Rows.Add();

 ps.SIGN = "I";

 ps.OPTION = "EQ";

 ps.LOW = "3000";

 return GetEquipmentList(plants);

 }

 }

}

LINQ to SAP also provides the capability to log LINQ query translations. In order to log data the LOG property of
the context class must be set with a TextWriter instance, e.g. the console output Console.Out. All LINQ to SAP
does is a very rudimentary logging which is restricted to table objects. But it helps developers to get a feeling about
what the translated where part looks like.

Summary

In overall LINQ to SAP is very simple but yet powerful LINQ data provider and Visual Studio 2008 Designer to
use. You also get a feeling on how to develop against a SAP/R3 system using .NET. For more information about the
product please check out the homepage of the vendor, http://www.theobald-software.com.

Contact Information

If you have any feedback or suggestions, please feel free to contact me:

Jürgen Bäurle
http://www.parago.de

http://www.parago.de/jbaurle

