How To Save ASP.NET View And Control State In Cache
On The Server Instead Of Using Hidden Fields

Jurgen Béurle
September 2006

Parago Media GmbH & Co. KG

Introduction

In the area of web development it's amatter of common knowledge that sequenced HTTP requests are stateless. To
maintain stae between HTTP requests, ASP.NET introduced the concept of page state, dso known as"View Sate"
to store data between page requests. The view state consists of control and page settings and data that make up the
web form itself.

With ASP.NET 2.0, Microsoft introduced an additiona concept, cdled "Control Sate'. The control sate is Smilar
to view state but works independent of it. View state can be disabled by developers, control state not. That implies,
data stored as control state should be essential and critical for control functionality and data that must be available on
postbacks.

In order to save respectively load view state and control state the ASP.NET storage mechanisms calls the method
SavePageStateToPersistenceMedium respectively L oadPageStateFromPersistenceMedium on the Page class. Once
you anayze the Page class with Lutz Roeder's ".NET Reflector" you see both of the methods will get their concrete
PageStatePersister instance from the property with same name. The code for property PageStatePersister shows that
the default implementation creates an instance of type HiddenFieldPageStatePersister to save and load view and
control gtate in a hidden form field. The parameter passed to SavePageStateToPersistenceMedium is of type Pair in
.NET 2.0, containing both view state in property Second and control state in property First. Prior to version 2.0, just
the view stateitself is passed.

Knowing this procedure, there are basicaly two ways to implement your own storage mechanisms. This article uses
the server-side cache as page state storage, described in the following sections.

Implementation |

One implementation of the server-side cache storage is to overide the methods SavePageStateT oPersistenceMedium
and L oadPageStateFromPersistenceM edium of the Page class. For this purpose we will create a class BasePageSimple
which inherits from Page class. Here the complete sample code:

public class BasePageSi nple : Page {
protected override void SavePageSt at eToPer si st enceMedi un{ obj ect state) {
StringBuil der key=new StringBuilder();
/] Generate a uni que cache key

key. Append(" VI EWSTATE ")
. Append(Sessi on! =nul | ?Sessi on. Sessi onl D: Gui d. NewGui d() . ToString())

- Append(”_")
. Append(Request . RawuUr |)
- Append(” _")

. Append(Dat eTi ne. Now. Ti cks. ToString());

/1 Add view state and control state to cache
Cache. Add(

key. ToString(),

state,

nul I,

Dat eTi ne. Now. AddM nut es(15),

Cache. NoSl i di ngExpi rati on,

CacheltenPriority. Default,

nul |

)

/! Register hidden field to store cache key in
ClientScript. RegisterHiddenFi el d("__VI ENSTATE_CACHEKEY", key. ToString());

}
protected override object LoadPageStateFronPersistenceMedi un() {

/'l Get the cache key fromthe web formdata
string key=Request. Parans["__VI EASTATE_CACHEKEY"] as string;

// Abort if cache key is not available or valid
if(String.lsNull OrEnpty(key)||!key. StartsWth("VI EWSTATE "))
throw new Applicati onException("M ssing vaild __VI EWSTATE CACHEKEY") ;

/! Return cached view state and control state
return Cache[key];

}

A web form will inherit it's base functionaity from BasePageSmple class instead directly from Page. The solution
will save a page specific cache key in a hidden field, caled *__wvi EWSTATE _CACHEKEY" . The cache key will be used to
save and load the view state and control state to and from the server-side cache.

The SavePageStateT oPersistenceM edium method generates an unique cache key containing among others the URL
of the web form:

key. Append(" VI ENSTATE_"
. Append(Sessi on! =nul | ?Sessi on. Sessi onl D: Gui d. NewGui d(). ToString())

- Append(” _")
. Append(Request . Rawur |)
. Append("_"

. Append(Dat eTi me. Now. Ti cks. ToString());

After adding the passed view date (parameter sate) to the cache using the created key, the next step will register a
hidden field to save the key within the web form:

ClientScript.RegisterH ddenFi el d("__VI EWSTATE_CACHEKEY", key.ToString());

The LoadPageStateFromPersistenceM edium method is requesting the above registered hidden field to get the cache
key and receive the view state and control state:

string key=Request. Parans["__VI ENSTATE_CACHEKEY"] as string;

'r"et urn Cache[key] ;
That'sit.
Implementation ||

The other way to realize a server-side page Sate storage is to provide a concrete implementation of the abstract class
PageStatePersister. In our case that will be the CachePageStatePersister class. In order to use the storage mechanisms
we dso need to creste a new base class named BasePage derived from Page class. The BasePage class is overriding
now just the property PageStatePersister of the Page class. Here the code for BasePage:

public class BasePage : Page {
CachePageSt at ePer si st er cachePageSt at ePer si ster;

publ i c BasePage()
base() {
cachePageSt at ePer si st er=new CachePageSt at ePersi ster(this);

}

protected override PageStat ePersister PageStatePersister {
get {
return cachePageSt at ePersi ster;
}
}

The BasePage congtructor is initidzing a new instance of the CachePageStatePersister class and saves it in a private
member field. The object instance is returned when the overridden Page class property PageStatePersister is called by
the method SavePageStateToPersistenceMedium and LoadPageStateFromPersistenceMedium. These methods are
using the property PageStatePersister to get an actual implementation of the PageStatePersister class.

Microsoft's default implementation for the Page.PageStatePersister property looks as follows:

protected virtual PageStatePersister PageStatePersister {
get {
i f(_persister==null) {
PageAdapt er adapt er =PageAdapt er;
i f (adapter!=null)
_persi ster=adapt er. Get St at ePersi ster();
i f(_persister==null)
_persister=new Hi ddenFi el dPageSt at ePersi ster(this);

}

return _persister;
}
}

The getter method isfirst checking if the private member fild _persister has been s, if not the logic tries to create
an ingtance of the PageStatePersister by cdling PageAdpater's GetSatePersster method. The default implementation
of GetSatePersister is returning a HiddenFieldPageStatePersister instance. If al fails the PageStatePersister property
will always return anew HiddenFieldPageStatePersister instance.

Now that we have integrated ourselves into the page logic we till need to look a the CachePageStatePersister class
itself. The CachePageStatePersister is drived from the abstract PageStatePersister class. Here the sample code:

public class CachePageSt at ePersi ster : PageStat ePersister {

publ i ¢ CachePageSt at ePer si st er (Page page)
base(page) {

public override void Load() {

/'l Get the cache key fromthe web formdata
string key=Page. Request . Parans["__VI EWNSTATE_CACHEKEY"] as string;

// Abort if cache key is not available or valid
if(String.lsNull OrEnpty(key)||!key. StartsWth("VI EWSTATE "))
throw new Applicati onException("M ssing vaild __VI EWSTATE CACHEKEY") ;

Pai r state=Page. Cache[key] as Pair;

/1 Abort if cache object is not of type Pair
if(state==null)
throw new Applicati onException("M ssing vaild __VI EWSTATE _CACHEKEY") ;

/] Set view state and control state
Vi ewSt at e=state. First;
Control St at e=st at e. Second;

}
public override void Save() {
/1 No processing needed if no states avail able
i f(ViewsState==null &Control State!=null)
return;

StringBuil der key=new StringBuilder();

/] Generate a uni que cache key
key. Append(" VI EWSTATE ")
. Append(Page. Sessi on! =nul | ?Page. Sessi on. Sessi onl D: Gui d. NewGui d() . ToString())

- Append(” _")
. Append(Page. Request . Rawlr |)
. Append("_")

. Append(Dat eTi ne. Now. Ti cks. ToString());

/1 Save view state and control state separately
Pair state=new Pair(ViewState, Control State);

/1 Add view state and control state to cache
Page. Cache. Add(
key. ToString(),
state,
nul I,
Dat eTi ne. Now. AddM nut es(15),
Cache. NoSl i di ngExpi rati on,
CacheltenPriority. Default,
nul |

)

/'l Register hidden field to store cache key in
Page. d i ent Scri pt. Regi ster H ddenFi el d("__VI ENSTATE_CACHEKEY", key. ToString());

}

The code is similar to the first implementation, but distinguishs view state and control state to save it separately in
the corresponding properties provided by the base class PageStatePersister. Therefore it caches the state informetion
using an ingtance of type Pair. The class Pair offers just two public fields, First and Second. These properties are of
type object.

Summary

Microsoft has done agreat job in the area of extending ASP.NET. Implementing own PageStatePersistersis ararely
used feeture, but it can be very helpful in avoiding transferring a lot of overhead between server round trips. The
sample is using the server-side cache, but you could dso save stae information in a database or on the file system.
To seridize and deserialize states you can easily use the StateFormatter property of the Page class.

The source code for the CachePageStatePersister is available for download on my homepage.

Contact Information

If you have any feedback or suggestions, please fed free to contact me:

Jurgen Béurle
jbaurle@parago.de

http://www.parago.de/jbaurle
http://www.parago.de

